极端温度对精确制导弹药命中精度的量化分析方法

刘兆丰, 齐子元, 崔凯波, 李想

装备环境工程 ›› 2025, Vol. 22 ›› Issue (9) : 105-114.

PDF(4377 KB)
PDF(4377 KB)
装备环境工程 ›› 2025, Vol. 22 ›› Issue (9) : 105-114. DOI: 10.7643/ issn.1672-9242.2025.09.012
武器装备

极端温度对精确制导弹药命中精度的量化分析方法

  • 刘兆丰1, 齐子元1,*, 崔凯波1, 李想2
作者信息 +

Quantitative Analysis Method for Effect of Extreme Temperature on Hit Accuracy of PGMs

  • LIU Zhaofeng1, QI Ziyuan1,*, CUI Kaibo1, LI Xiang2
Author information +
文章历史 +

摘要

目的 针对精确制导弹药在全寿命周期内经历的复杂温度环境,建立一种量化极端温度对命中精度影响的分析方法。方法 建立包含弹体结构、导引头光学窗口及惯性测量单元(IMU)的多物理场耦合有限元分析模型,通过模拟高低温贮存、发射及飞行剖面中的动态气动加热和内部热源等多种热载荷,分析弹药关键部件的瞬态温度场与热变形。重点研究光学窗口和IMU安装基座等精度敏感部件的变形规律,建立部件变形与导引头指向误差之间的量化映射模型。结果 在+60 ℃和-40 ℃初始条件下,飞行末端的热致指向误差显著,导致命中精度(CEP)相较于常温基准(5.02 m)分别退化约40%(增至7.03 m)和27%(增至6.38 m)。结论 本文提出的量化评估方法,实现了从外部环境到内部变形再到最终作战效能的系统性分析。与稳态分析相比,考虑飞行剖面的动态热载荷分析能更准确地揭示热效应对作战能力的影响。该方法可为精确制导弹药的环境适应性设计、作战包线确定及性能评估提供理论依据和技术支持。

Abstract

The work aims to establish a method for quantifying the impact of extreme temperature on the hit accuracy of precision-guided munitions (PGMs) throughout their life cycle. A multi-physics coupled finite element analysis (FEA) model encompassing the missile body structure, seeker optical window, and inertial measurement unit (IMU) was established. By simulating various thermal loads, including high/low-temperature storage and dynamic aerodynamic heating and internal heat sources during the flight profile, the transient temperature fields and thermal deformations of critical components were analyzed. The study focused on the deformation patterns of accuracy-sensitive parts like the optical window and IMU mounting base, establishing a quantitative mapping model between component deformation and seeker pointing error. The analysis revealed that under +60 ℃ and -40 ℃ initial conditions, the thermally induced pointing error at the end of flight was significant, causing the hit accuracy (CEP) to degrade by approximately 40% (to 7.03 m) and 27% (to 6.38 m) respectively, compared with the room-temperature baseline (5.02 m). The proposed quantitative assessment method achieves a systematic analysis from the external environment through internal deformation to final operational effectiveness. Compared with steady-state analysis, dynamic thermal load analysis considering the flight profile more accurately reveals the impact of thermal effects on combat capability. This methodology provides a robust theoretical basis and technical support for the environmental adaptability design, operational envelope determination, and performance evaluation of PGMs.

关键词

精确制导弹药 / 极端温度 / 有限元分析 / 多物理场耦合 / 命中精度 / 量化分析

Key words

precision-guided munitions / extreme temperature / finite element analysis / multi-physics field coupling / hit accuracy / quantitative analysis

引用本文

导出引用
刘兆丰, 齐子元, 崔凯波, 李想. 极端温度对精确制导弹药命中精度的量化分析方法[J]. 装备环境工程. 2025, 22(9): 105-114 https://doi.org/10.7643/ issn.1672-9242.2025.09.012
LIU Zhaofeng, QI Ziyuan, CUI Kaibo, LI Xiang. Quantitative Analysis Method for Effect of Extreme Temperature on Hit Accuracy of PGMs[J]. Equipment Environmental Engineering. 2025, 22(9): 105-114 https://doi.org/10.7643/ issn.1672-9242.2025.09.012
中图分类号: TJ765.4   

参考文献

[1] 张延风, 张士峰, 周建, 等. 陆军精确打击火力发展研究[J]. 弹箭与制导学报, 2019, 39(4): 69-72.
ZHANG Y F, ZHANG S F, ZHOU J, et al.Research on the Development of Precision Strike Firepower in the Army[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2019, 39(4): 69-72.
[2] 李广, 王明光, 王晓燕, 等. 面向跨域作战的精确制导弹药技术发展分析[C]// 中国航天电子技术研究院科学技术委员会2020年学术年会论文集. 北京: 中国航天电子技术研究院, 2020: 599-605.
LI G, WANG M G, WANG X Y, et al.Analysis on the development of precision-guided munitions technology for cross-domain combat[C]// 2020 Annual Academic Conference of Science and Technology Committee of China Academy of Space Electronics Technology. Beijing: CASC, 2020.
[3] 张洋, 廖南杰. 美军空地制导弹药发展策略分析[J]. 飞航导弹, 2021(11): 86-90.
ZHANG Y, LIAO N J.Analysis on Development Strategy of Air-to-Ground Guided Ammunition of US Army[J]. Aerodynamic Missile Journal, 2021(11): 86-90.
[4] 程敬德, 杨雷, 郭亚飞. 空军精确制导弹药保障模式与发展方向[J]. 航空维修与工程, 2020(2): 34-37.
CHENG J D, YANG L, GUO Y F.Support Mode and Development Direction of Air Force Precision Guided Ammunition[J]. Aviation Maintenance & Engineering, 2020(2): 34-37.
[5] 李同顺, 奚勇, 印剑飞. 对空红外制导关键技术发展分析[J]. 上海航天(中英文), 2021, 38(3): 163-170.
LI T S, XI Y, YIN J F.Analysis on the Development of Key Technologies for Surface-to-Air Infrared Guidance[J]. Aerospace Shanghai (Chinese & English), 2021, 38(3): 163-170.
[6] 王皖阳, 刘旭鹏, 王新全. 高原条件下空地制导弹药使用影响因素分析[J]. 中国军转民, 2024(8): 19-20.
WANG W Y, LIU X P, WANG X Q.Analysis of Influencing Factors on the Use of Air-to-Ground Guided Ammunition under Plateau Conditions[J]. Defence Industry Conversion in China, 2024(8): 19-20.
[7] 纪德东, 段恒宇. 空空作战中导弹攻击距离影响因素分析[J]. 航空电子技术, 2024, 55(2): 1-9.
JI D D, DUAN H Y.Influencing Factor Analysis of Missile Attack Range in Air-to-Air Combat[J]. Avionics Technology, 2024, 55(2): 1-9.
[8] 田义, 赖敬业, 王丙乾, 等. 精确制导武器智能仿真技术发展研究[J]. 空天防御, 2025, 8(2): 7-17.
TIAN Y, LAI J Y, WANG B Q, et al.Research on the Development of Intelligent Simulation Technology for Precision-Guided Weapons[J]. Air & Space Defense, 2025, 8(2): 7-17.
[9] 傅朝, 王珺. 塑封SiC功率器件在高温损耗功率下的热应力和断裂分析[J]. 半导体技术, 2025, 50(4): 393-398.
FU Z, WANG J.Thermal Stress and Fracture Analysis of Plastic Encapsulated SiC Power Devices under High Temperature Power Dissipation[J]. Semiconductor Technology, 2025, 50(4): 393-398.
[10] 张家铭. 滚仰式红外导引头极端温度下成像仿真[D]. 长春: 长春理工大学, 2024.
ZHANG J M.Imaging Simulation of Roll-up Infrared Seeker under Extreme Temperature[D]. Changchun: Changchun University of Science and Technology, 2024.
[11] 刘涛, 李志成, 谢梓铿, 等. 基于有限元仿真技术的某型发射车承力部件应力分析[J]. 现代防御技术, 2022, 50(3): 103-108.
LIU T, LI Z C, XIE Z K, et al.Stress Analysis of Load-Bearing Parts of a Launch Vehicle Based on Finite Element Simulation Technology[J]. Modern Defence Technology, 2022, 50(3): 103-108.
[12] 刘文超, 李大伟, 郑小兵, 等. 制导武器命中精度估计方法与检验方法一致性研究[J]. 火力与指挥控制, 2024, 49(2): 125-131.
LIU W C, LI D W, ZHENG X B, et al.Research on the Consistency of Evaluation Method and Test Method for Guided Weapon Hit Accuracy[J]. Fire Control & Command Control, 2024, 49(2): 125-131.
[13] 罗俊豪, 张克钒, 王硕, 等. 线列式破片战斗部对导弹目标毁伤效能分析[J]. 火箭军工程大学学报, 2024(3): 26-37.
LUO J H, ZHANG K F, WANG S, et al.Damage Effectiveness Analysis of Linear Warhead to Missile Target[J]. Journal of Rocket Force University of Engineering, 2024(3): 26-37.
[14] 薛敏, 赵建忠, 席建峰, 等. 精确制导弹药延寿阶段贮存可靠性预测模型研究[J]. 舰船电子工程, 2020, 40(3): 120-123.
XUE M, ZHAO J Z, XI J F, et al.Study on Prediction Model of Storage Reliability at Life Prolonging Stage of Precision Guided Ammunitions[J]. Ship Electronic Engineering, 2020, 40(3): 120-123.
[15] ZOHDI T I.The Basics of Finite Element Methods[M]. Cham: Springer Nature Switzerland, 2025: 77-100.
[16] 刘昊邦, 胡涛, 陈童, 等. Dirichlet分布的导弹命中精度贝叶斯估计[J]. 国防科技大学学报, 2025, 47(3): 119-127.
LIU H B, HU T, CHEN T, et al.Bayesian Estimation of Missile Hit Accuracy for Dirichlet Distribution[J]. Journal of National University of Defense Technology, 2025, 47(3): 119-127.
[17] 朱楠. 基于有限元理论分析切削振动对CBN刀具磨损的影响[J]. 金刚石与磨料磨具工程, 2020, 40(1): 92-98.
ZHU N.Study on Influence of Cutting Vibration on CBN Tool Wear Based on Finite Element Theory[J]. Diamond & Abrasives Engineering, 2020, 40(1): 92-98.
[18] 王宁. 基于模糊代理模型的飞行器高保真模型确认方法研究[D]. 长沙: 国防科技大学, 2021.
WANG N.Research on Aircraft High Fidelity Model Verification Method Based on Fuzzy Proxy Model[D]. Changsha: National University of Defense Technology, 2021.
[19] 姚江涛, 张侃. 基于有限元仿真的引信末弹道适应性研究[J]. 兵工自动化, 2022, 41(7): 72-74.
YAO J T, ZHANG K.Research on Fuse Terminal Trajectory Adaptability Based on Finite Element Simulation[J]. Ordnance Industry Automation, 2022, 41(7): 72-74.
[20] 叶玲, 江宏康, 冯宇轩. 基于改进PC-Kriging高保真代理模型的结构损伤识别方法[J/OL]. 工程力学, 2024: 1-17. (2024-06-26). http://kns.cnki.net/KCMS/detail/detail.aspx? filename=GCLX20240624005&dbname=CJFD &dbcode=CJFQ.
YE L, JIANG H K, FENG Y X. Structural Damage Identification Method Based on Improved PC-Kriging High Fidelity Proxy Model[J/OL]. China Industrial Economics, 2024: 1-17. (2024-06-26). http://kns.cnki.net/KCMS/detail/detail.aspx? filename=GCLX20240624005&dbname= CJFD&dbcode=CJFQ.
[21] 赵越. 机械结构高维多保真代理模型方法及不确定性分析研究[D]. 长沙: 湖南大学, 2023.
ZHAO Y.Research on High-Dimensional and Multi-Fidelity Proxy Model Method and Uncertainty Analysis of Mechanical Structure[D]. Changsha: Hunan University, 2023.
[22] SYALIMAN K U, NABABAN A A, JANNAH M, et al.Latin Hypercube Sampling Approach to Improve K- Nearest Neighbors Performance on Imbalanced Data[C]// 2023 International Conference of Computer Science and Information Technology (ICOSNIKOM). Binjia: IEEE, 2023.
[23] SHIN P S, WOO S H, ZHANG Y L, et al.An Application of Latin Hypercube Sampling Strategy for Cogging Torque Reduction of Large-Scale Permanent Magnet Motor[J]. IEEE Transactions on Magnetics, 2008, 44(11): 4421-4424.
[24] WANG S, CHEN L.A PSO Algorithm Based on Orthogonal Test Design[C]// 2009 Fifth International Conference on Natural Computation. Tianjian: IEEE, 2009.
[25] 孙晓勇, 宋兴海, 侯娜娜, 等. 用张量分析方法推导含偶应力弹性力学有限元理论[J]. 河北水利电力学院学报, 2021, 31(1): 75-80.
SUN X Y, SONG X H, HOU N N, et al.Derivation of the Finite Element Theory of Elasticity with Couple Stress by Tensor Analysis[J]. Journal of Hebei University of Water Resources and Electric Engineering, 2021, 31(1): 75-80.

PDF(4377 KB)

Accesses

Citation

Detail

段落导航
相关文章

/